

Statement of Verification

CARES EPD No.: 0024

Issue 01

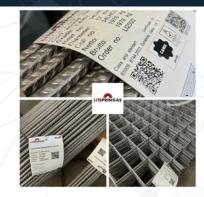
This is to verify that the

Environmental Product Declaration

Provided by: UAB "Litspringas"

Is in accordance with the requirements of:

ISO 14025:2010 and EN 15804:2012 + A2:2019/AC2021 and BRE Global PCR for Type III EPD of Construction Products to EN 15804+A2. PN514 3.1


This declaration is for:

Stainless Steel Reinforcing Bar (Secondary production route - Scrap)

Salantų Street No 8, Plungė LT-90115 Lithuania

DECLARA OLONO

LOVOOR9 JATHAN

LadinCamci

Ladin Camci

Operator

16 June 2025

Date of this Issue

15 June 2028

16 June 2025

Signed for CARES

First Issue Date **Expiry Date**

The validity of this Environmental Product Declaration can be verified by contacting CARES on +44 (0)1732 450 000 or visiting CARES website https://www.carescertification.com/certification-schemes/environmental-product-declarations.

CARES, Pembroke House, 21 Pembroke Road, Sevenoaks, Kent TN13 1XR

Environmental Product Declaration

EPD Number: CARES EPD 0024

General Information

EPD Programme Operator	CARES Pembroke House, 21 Pembroke Road, Sevenoaks, Kent, TN13 1XR UK www.carescertification.com
Applicable Product Category Rules	BRE Global Product Category Rules (PCR) for Type III EPD of Construction Products to EN 15804+A2. PN514 3.1
Commissioner of LCA study	CARES Pembroke House, 21 Pembroke Road, Sevenoaks, Kent, TN13 1XR UK www.carescertification.com
LCA consultant/Tool	CARES EPD Tool version 2.8 SPHERA SOLUTIONS UK LIMITED The Innovation Centre Warwick Technology Park, Gallows Hill, Warwick, Warwickshire CV34 6UW UK www.sphera.com
Declared/Functional Unit	1 tonne of stainless steel reinforcing bar manufactured by the secondary (scrap-based) production route
Applicability/Coverage	Manufacturer-specific product produced at a single plant of one manufacturer
EPD Type	Cradle to Gate with Modules C1-C4 and Module D
Background database	LCA FE (GaBi) Dataset Documentation (Sphera 2023.1)

Demonstration of Verification

CEN standard EN 15804 serves as the core PCR $^{\circ}$

Independent verification of the declaration and data according to EN ISO 14025:2010

□ Internal □ External

(Where appropriate b) Third party verifier:

Dr Jane Anderson

a: Product category rules

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

CARES EPD 0024 Expiry Date: 15 June 2028 Page 1 of 18

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019/AC2021. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019/AC2021 for further guidance

Information modules covered

Pr	oduct Sta	ıge	Constr Sta			Use Stage				End-of-life Stage			Benefits and loads beyond the system boundary			
A 1	A2	А3	A4	A 5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
1	✓	✓ \	✓	1	√	✓	✓	✓	1	✓	1	✓	1	1	✓	✓

Note: Checks indicate the Information Modules declared.

Manufacturing site

UAB "Litspringas" Salantų Street No 8, Plungė LT-90115 Lithuania

Construction Product:

Product Description

Stainless steel reinforcing bar is the steel product (according to product standards listed in References) that is obtained from scrap, melted in an EAF (Electric Arc Furnace) followed by hot rolling. These are used to provide tensile strength in reinforced concrete building elements.

The declared unit is 1 tonne of stainless steel wire rods manufactured by the secondary (scrap-based) production route.

CARES EPD 0024 Expiry Date: 15 June 2028 Page 2 of 18

Technical Information

Property	Value, Unit
Production route	Scrap - EAF
Young's Modulus Austenitic-ferritic corrosion resistant stainless reinforcing steels Austenitic corrosion resistant stainless reinforcing steels	200 GPa 190 to 200 GPa
Characteristic Yield Strength (as per BS 6744:2023)	min 500 MPa
0.2% Proof Strength (as per BS 6744:2023)	min 500 MPa
Tensile strength (as per BS 6744:2023)	min 540 MPa (Tensile strength/Yield Strength ≥ 1.08)
Agt (% total elongation at maximum force as per BS 6744:2023)	min 5 %
A ₅ (% total elongation after fructure as per BS 6744:2023)	min 14 %
Surface geometry (Relative rib area, fR as per BS 6744:2023)	min 0.036 for Bar Size 6mm min 0.040 for Bar Size >6mm & ≤12mm & min 0.056 for Bar size>12
Bend test (as per BS 6744:2023)	Pass
Fatigue test (as per BS 6744:2023)	Pass
Recycled content (as per ISO 14021:2016/Amd:2021)	74.1 %

Main Product Contents

Material/Chemical Input	%
Fe	50 - 80
C, Mn, Si, Cr, Ni, Mo, Cu, P, N	20 – 50

Material chemical composition by mass, typical stainless reinforcing steel designations are as per Table 5 of the BS 6744:2023

Manufacturing Process

Scrap steel is melted in EAF (Electric Arc Furnace) to obtain liquid steel. It is then further processed in AOD (Argon Oxygen Decarburisation) or VOD (Vacuum Oxygen Decarburisation) furnace to remove carbon and impurities and for alloying to impart the required properties to the steel.

Refined molten steel is then cast into steel billets before being sent to the rolling mill where they are rolled and shaped to the required dimensions for the semi-finished stainless steel wire rod coils.

Stainless steel wire rods are then annealed to remove internal stresses and improve ductility and pickled by using acid baths to remove surface scale.

Annealed and pickled stainless steel wire rod coils are then cold rolled to stainless reinforcing steel bars in required dimensions specified as per the listed standards given in the References section.

The products are packaged by binding with steel wires or straps, both the steel ties and products do not include any biogenic materials.

CARES EPD 0024 Expiry Date: 15 June 2028 Page 3 of 18

Process flow diagram

Stainless Reinforcing Steel Bar Annealed & Pickded Stainless Steel Wire Rod Electricity Cold Rolling Gas Fuels Stainless Reinforcing Steel Bar

Construction Installation

Processing and proper use of reinforcing steel products depends on the application and should be made in accordance with generally accepted practices, standards and manufacturing recommendations.

During transport and storage of reinforcing steel products the usual requirement for securing loads is to be observed.

Use Information

The composition of the reinforcing steel products does not change during use.

Reinforcing steel products do not cause adverse health effects under normal conditions of use.

No risks to the environment and living organisms are known to result from the mechanical destruction of the reinforcing steel product itself.

End of Life

Reinforcing steel products are not reused at end of life but can be recycled to the same (or higher/lower) quality of steel depending upon the metallurgy and processing of the recycling route.

It is a high value resource, so efforts are made to recycle steel scrap rather than disposing of it at EoL. A recycling rate of 92% is typical for reinforcing steel products

Life Cycle Assessment Calculation Rules

This EPD uses the "Cut-off by Classification" method, also known as the recycled content method. It assigns the environmental impacts of primary material production to the initial user. Recyclable materials enter the recycling process without burdens, and secondary materials only bear the impacts of recycling.

This method promotes recycling by making producers responsible for waste management. It supports a circular economy by reducing the environmental impacts of primary material production.

This approach follows ISO 14040 and ISO 14044 standards for Life Cycle Assessments.

The Life Cycle Impact Assessment (LCIA) has been carried out using the characterisation method described in EN 15804+A2. The characterisation factors from Environmental Footprint v3.0 (EF 3.0) was applied.

CARES EPD 0024 Expiry Date: 15 June 2028 Page 4 of 18

Declared unit description

1 tonne of stainless steel reinforcing bar manufactured by the secondary (scrap-based) production route

System boundary

The system boundary of the EPD follows the modular design defined by EN 15804+A2. Type of this EPD is Cradle to Gate with Modules C1-C4 and Module D.

Impacts and aspects related to losses/wastage (i.e. production, transport and waste processing and end-of-life stage of lost waste products and materials) are considered in the modules in which the losses/wastage occur.

Once steel scrap has been collected for recycling it is considered to have reached the end of waste state.

Data sources, quality and allocation

Data Sources and Quality:

The selection of data and the data quality requirements have been provided according to the requirements of BS EN 15941:2024.

Data Sources: Manufacturing data of the period 01/01/2024 - 31/12/2024 has been provided by UAB "Litspringas" operating on the geographical area given in Manufacturing Site. A brief description of technology and inputs for the product is given in Manufacturing Process and in simplified Process Flow Diagram. Accordingly, UAB "Litspringas" cold rolled the purchased stainless steel wire rod semi-finished products into stainless steel reinforcement rods of the required dimensions specified in accordance with the listed standards given in the References section.

The primary data collection was thorough, considering all relevant flows and these data were verified by CARES, including also the verification of mass balance, to ensure that data for all the inputs and outputs for the process over the period of data collection have been collected, and that the unit process data will comply with the cut-off rules of EN 15804. The EPD covers transport to, and end-of-life in Thailand.

The selection of the background data for electricity generation is in line with the BRE Global PCR PN514 3.1. Country or region-specific power grid mixes are selected from LCA FE (GaBi) Dataset Documentation (Sphera 2023.1); thus, consumption grid mix of Lithuania has been selected to suit specific manufacturing location, and also for fabrication, installation and demolishing location. The emission factor of carbon footprint of the applied consumption grid mix of Lithuania in 0.368 kg CO₂ eq/kWh.

Data Quality: Background data is consistently sourced from the LCA FE (GaBi) Dataset Documentation (Sphera 2023.1). The primary data collection was thorough, considering all relevant flows and these data have been verified during the audit conducted by CARES in March 2025.

There isn't any data from different LCI/LCA databases are used considering that the overall consistency of the study is not adversely affected.

Schemes applied for data quality assessment was as per EN 15804:2012+A2:2019, Annex E, Table E.1 — Data quality level and criteria of the UN Environment Global Guidance on LCA database development. No fair, poor or very poor data was found during the assessment of relevant data.

Data quality level and criteria of the UN Environment Global Guidance on LCA database development:

Geographical Representativeness : Good
Technical Representativeness : Very good
Time Representativeness : Good

Allocation:

Mill scale is expected to be produced as co-products from the cold rolling of stainless steel. However, there wasn't any mill scale produced during the process, therefore, no allocation was required to be applied.

Production losses of steel during the production process are recycled in a closed loop offsetting the requirement for external scrap. Specific information on allocation within the background data is given in the LCA FE (GaBi) Dataset Documentation (Sphera 2023.1).

CARES EPD 0024 Expiry Date: 15 June 2028 Page 5 of 18

Cut-off criteria

On the input side all flows entering the system and comprising more than 1% in total mass or contributing more than 1% to primary energy consumption are considered. All inputs used as well as all process-specific waste and process emissions were assessed. For this reason, material streams which were below 1% (by mass) were captured as well. In this manner the cut-off criteria according to the PCR requirements are fulfilled).

The mass of steel wire or strap used for binding the product coil is less than 1 % of the total mass of the product.

CARES EPD 0024 Expiry Date: 15 June 2028 Page 6 of 18

LCA Results

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Core environmental in	mpact indicators								
			GWP-	GWP-	GWP-	GWP-	ODP	AP	EP- freshwat
Life Cycle Stage	Impact Category		total kg CO ₂	fossil kg CO ₂	biogenic kg CO ₂	luluc kg CO2	kg	mol H+	kg P ed
Life Cycle Stage	Impact category		eq eq	eq eq	eq eq	eq eq	CFC11	eq	kg i et
					5 4		eq		
	Raw material supply	A1	3.22E+03	3.23E+03	-17.0	6.54	7.18E-12	23.9	3.97E-0
Product stage	Transport	A2	208	208	-0.202	0.351	4.26E-11	5.18	2.06E-0
Trodoct stage	Manufacturing	A3	30.7	30.5	0.185	0.002	3.37E-11	0.095	4.24E-0
	Total (of product stage)	A1-3	3.46E+03	3.47E+03	-17.0	6.89	8.35E-11	29.2	4.22E-0
Construction process	Transport	A4	20.7	20.8	-0.290	0.190	1.8E-12	0.064	7.48E-0
stage	Construction	A5	69.9	70.2	-0.476	0.146	1.87E-12	0.589	8.77E-0
	Use	В1	0	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0	0
// _	Replacement	B4	0	0	0	0	0	0	0
Use stage	Refurbishment	B5	0	0	0	0	0	0	0
	Operational energy use	В6	0	0	0	0	0	0	0
	Operational water use	В7	0	0	0	0	0	0	0
%92 Recycling / %8 Lo	andfill Scenario	7	Y			M		1	/
	Deconstruction, demolition	C1	2.15	2.15	2.65E-03	4.06E-05	1.64E-13	0.003	4.12E-0
End of life	Transport	C2	41.4	41.9	-0.898	0.407	4.04E-12	0.193	1.61E-0
Elia of ilic	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	1.17	1.20	-0.040	0.004	3.05E-12	0.009	2.42E-0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-855	-857	3.97	-2.27	-5.41E-13	-5.23	-1.23E-0
100% Landfill Scenario				_			7	/	- //
//	Deconstruction, demolition	C1	2.15	2.15	2.65E-03	4.06E-05	1.64E-13	0.003	4.12E-0
End of life	Transport	C2	1.89	1.92	-0.044	0.020	1.88E-13	0.007	7.83E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	14.6	15	-0.499	0.047	3.82E-11	0.107	3.02E-0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	4.43E+03	4.44E+03	-20.6	11.8	2.81E-12	27.1	6.38E-0
100% Recycling Scenario		/							
	Deconstruction, demolition	C1	2.15	2.15	2.65E-03	4.06E-05	1.64E-13	0.003	4.12E-0
End of life	Transport	C2	44.8	45.3	-0.973	0.440	4.37E-12	0.209	1.74E-0
	Waste processing	C3	0	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.31E+03	-1.32E+03	6.11	-3.50	-8.32E-13	-8.05	-1.89E-0

GWP-total = Global warming potential, total;

GWP-fossil = Global warming potential, fossil;

GWP-biogenic = Global warming potential, biogenic;

GWP-luluc = Global warming potential, land use and land use change;

ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

Expiry Date: 15 June 2028 Page **7** of **18** ©CARES 2024

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = gagregated)

			EP-marine	EP- terrestrial	POCP	ADP- mineral & metals	ADP-fossil	WDP
Life Cycle Stage	Impact Category		kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m³ world ed deprived
	Raw material supply	A1	1.26	34.2	9.44	0.192	4.19E+04	1.61E+03
Dra di catata a a	Transport	A2	1.26	13.8	3.53	4.88E-06	2.71E+03	1.89
Product stage	Manufacturing	A3	0.029	0.312	0.079	1.33E-06	532	1.39
	Total (of product stage)	A1-3	2.55	48.3	13.0	0.192	4.51E+04	1.61E+03
Construction process	Transport	A4	0.029	0.328	0.058	1.32E-06	279	0.237
stage	Construction	A5	0.091	0.987	0.265	3.84E-03	917	32.4
//	Use	В1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0
// _	Replacement	B4	0	0	0	0	0	0
Use stage	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	В6	0	0	0	0	0	0
	Operational water use	B7	0	0	0	0	0	0
%92 Recycling / %8 La			Y			1		
End of life	Deconstruction, demolition	C1	1.16E-03	0.013	0.004	2.15E-08	28.4	0.005
	Transport	C2	0.091	1.01	0.195	2.86E-06	633	0.511
Eria or inc	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0.002	0.024	0.007	5.54E-08	16.0	0.132
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-0.751	-8.14	-2.29	-1.25E-03	-1.04E+04	-348
100% Landfill Scenario	1/1					1 9	/	
X	Deconstruction, demolition	C1	1.16E-03	0.013	0.004	2.15E-08	28.4	0.005
End of life	Transport	C2	0.003	0.036	0.006	1.38E-07	29.2	0.025
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0.028	0.303	0.083	6.92E-07	200	1.65
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	3.90	42.2	11.9	0.007	5.41E+04	1.81E+03
100% Recycling Scena	ırio							
	Deconstruction, demolition	C1	1.16E-03	0.013	0.004	2.15E-08	28.4	0.005
End of life	Transport	C2	0.098	1.10	0.212	3.10E-06	685	0.553
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.16	-12.5	-3.52	-0.002	-1.60E+04	-535

ADP-mineral&metals = Abiotic depletion potential for non-fossil resources:

ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption.

The results of the three environmental impact indicators above shall be used with care as the uncertainties on these results are high or as there is limited experienced with these indicators.

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment;

EP-terrestrial = Eutrophication potential, accumulated exceedance; POCP = Formation potential of tropospheric ozone; PM = Particulate matter.

CARES EPD 0024 Expiry Date: 15 June 2028 Page 8 of 18

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

			PM	IRP	ETP-fw	HTP-c	HTP-nc	SQP	
Life Cycle Stage	Impact Catego	ory	disease incidence	kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless	
	Raw material supply	A1	3.61E-04	192	3.97E-03	1.29E-05	5.50E-05	-8.86E+04	
	Transport	A2	8.80E-05	1.93	2.06E-04	3.87E-08	1.79E-06	322	
Product stage	Manufacturing	A3	8.09E-07	1.76	4.24E-05	1.05E-08	3.57E-07	118	
	Total (of product stage)	A1-3	4.50E-04	1.96E+02	4.22E-03	1.29E-05	5.71E-05	-8.82E+04	
Construction process	Transport	A4	3.78E-07	0.052	7.48E-05	3.96E-09	2.47E-07	116	
stage .	Construction	A5	9.02E-06	3.92	8.77E-05	2.60E-07	1.16E-06	-1.76E+03	
	Use	В1	0	0	0	0	0	0	
	Maintenance	B2	0	0	0	0	0	0	
	Repair	В3	0	0	0	0	0	0	
lloo stago	Replacement	B4	0	0	0	0	0	0	
Use stage	Refurbishment	B5	0	0	0	0	0	0	
	Operational energy use	В6	0	0	0	0	0	0	
	Operational water use	В7	0	0	0	0	0	0	
%92 Recycling / %8 La						+1		1/	
End of life	Deconstruction, demolition	C1	1.88E-08	4.64E-03	4.12E-07	4.86E-10	1.52E-08	0.095	
	Transport	C2	1.52E-06	0.117	1.61E-04	8.94E-09	5.22E-07	249	
	Waste processing	C3	0	0	0	0	0	0	
	Disposal	C4	1.05E-07	0.021	2.42E-06	1.34E-09	1.48E-07	3.89	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.13E-04	-7.31	-1.23E-03	-1.28E-05	-6.48E-06	-1.43E+03	
100% Lanfill Scenario	1/1		74		/	17		- //	
	Deconstruction, demolition	C1	1.88E-08	4.64E-03	4.12E-07	4.86E-10	1.52E-08	0.095	
End of life	Transport	C2	3.65E-08	0.005	7.83E-06	4.14E-10	2.45E-08	12.2	
Eria or mo	Waste processing	C3	0	0	0	0	0	0	
	Disposal	C4	1.31E-06	0.263	3.02E-05	1.68E-08	1.85E-06	48.6	
Potential benefits and oads beyond the system boundaries	Reuse, recovery, recycling potential	D	5.87E-04	37.9	6.38E-03	6.61E-05	3.36E-05	7.42E+03	
100% Recycling Scend	ırio	/							
V /	Deconstruction, demolition	Cl	1.88E-08	4.64E-03	4.12E-07	4.86E-10	1.52E-08	0.095	
End of life	Transport	C2	1.65E-06	0.127	1.74E-04	9.68E-09	5.65E-07	270	
	Waste processing	C3	0	0	0	0	0	0	
	Disposal	C4	0	0	0	0	0	0	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.74E-04	-11.2	-1.89E-03	-1.96E-05	-9.96E-06	-2.20E+03	

IRP = Potential human exposure efficiency relative to U235; This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

HTP-nc = Potential comparative toxic unit for humans; and ETP-fw = Potential comparative toxic unit for ecosystems;

HTP-c = Potential comparative toxic unit for humans;

SQP = Potential soil quality index.

The results of the four environmental impact indicators above shall be used with care as the uncertainties on these results are high or as there is limited experienced with these indicators.

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Parameters desc	cribing resource	e use						
			PERE	PERM	PERT	PENRE	PENRM	PENRT
Life Cycle Stage	Impact Category		MJ	MJ	MJ	MJ	MJ	WJ
	Raw material supply	A1	9.04E+03	0	9.04E+03	4.20E+04	0	4.20E+0
Dun ali sakakasan	Transport	A2	138	0	138	2.71E+03	0	2.71E+0
Product stage	Manufacturing	A3	107	0	107	532	0	532
	Total (of product stage)	A1-3	9.29E+03	0	9.29E+03	4.52E+04	0	4.52E+0
Construction process	Transport	A4	19.7	0	19.7	280	0	280
stage .	Construction	A5	188	0	188	918	0	918
/	Use	В1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0
Han akarara	Replacement	B4	0	0	0	0	0	0
Use stage	Refurbishment	B5	0	0	0	0	0	0
	Operational energy use	В6	0	0	0	0	0	0
	Operational water use	В7	0	0	0	0	0	0
%92 Recycling / %8 La	ndfill Scenario	4		1		N /		*
End of life	Deconstruction, demolition	C1	0.125	0	0.125	28.4	0	28.4
	Transport	C2	42.4	0	42.4	634	0	634
	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	2.61	0	2.61	16.0	0	16.0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.96E+03	0	-1.96E+03	-1.04E+04	0	-1.04E+(
100% Landfill Scenario	771						1	
	Deconstruction, demolition	C1	0.125	0	0.125	28.4	0	28.4
End of life	Transport	C2	2.07	0	2.07	29.3	0	29.3
Eria or mo	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	32.6	0	32.6	200	0	200
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	1.02E+04	0	1.02E+04	5.41E+04	0	5.41E+0
100% Recycling Scena	ırio			77	/			
	Deconstruction, demolition	C1	0.125	0	0.125	28.4	0	28.4
End of life	Transport	C2	45.9	0	45.9	687	0	687
MIN X	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-3.01E+03	0	-3.01E+03	-1.60E+04	0	-1.60E+0

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Expiry Date: 15 June 2028 Page **10** of **18** ©CARES 2024

LCA Results (continued)

			SM	RSF	NRSF	FW	
ife Cycle Stage	Impact Category		kg	MJ net calorific value	MJ net calorific value	m³	
	Raw material supply	A1	0	0	0	1.61E+03	
	Transport	A2	0	0	0	1.89	
roduct stage	Manufacturing	A3	787	0	0	1.39	
	Total (of product stage)	A1-3	787	0	0	1.61E+03	
onstruction process	Transport	A4	0	0	0	0.237	
age	Construction	A5	0	0	0	32.4	
/	Use	B1	0	0	0	0	
	Maintenance	B2	0	0	0	0	
	Repair	В3	0	0	0	0	
se stage	Replacement	B4	0	0	0	0	
se stage	Refurbishment	B5	0	0	0	0	
	Operational energy use	B6	0	0	0	0	
	Operational water use	B7	0	0	0	0	
92 Recycling / %8 La	ndfill Scenario		T				
End of life	Deconstruction, demolition	C1	0	0	0	0.005	
	Transport	C2	0	0	0	0.511	
	Waste processing	C3	0	0	0	0	
	Disposal	C4	0	0	0	0.132	
otential benefits and ads beyond the system bundaries	Reuse, recovery, recycling potential	D	133	0	0	-348	
00% Landfill Scenario			_/ // \				
	Deconstruction,	C1	0	0	0	0.005	
1 616	demolition Transport	C2	0	0	0	0.025	
nd of life	Waste processing	C3	0	0	0	0	
	Disposal	C4	0	0	0	1.65	
otential benefits and ads beyond the system bundaries	Reuse, recovery, recycling potential	D	-787	0	0	1.81E+03	
00% Recycling Scena	rio					•	
	Deconstruction, demolition	C1	0	0	0	0.005	
nd of life	Transport	C2	0	0	0	0.553	
nd of me	Waste processing	C3	0	0	0	0	
	Disposal	C4	0	0	0	0	
otential benefits and bads beyond the system oundaries	Reuse, recovery, recycling potential	D	213	0	0	-535	

SM = Use of secondary material;

RSF = Use of renewable secondary fuels;

NRSF = Use of non-renewable secondary fuels;

FW = Net use of fresh water

CARES EPD 0024 Expiry Date: 15 June 2028 Page 11 of 18

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

			HWD	NHWD	RWD
Life Cycle Stage	Impact Category		kg	kg	kg
	Raw material supply	A1	0.140	150	1.79
	Transport	A2	1.03E-08	0.470	0.020
Product stage	Manufacturing	A3	3.41E-09	0.271	0.019
	Total (of product stage)	A1-3	0.140	1.51E+02	1.83
Construction	Transport	A4	1.04E-09	0.040	3.62E-04
process stage	Construction	A5	0.003	4.62	0.037
	Use	B1	0	0	0
	Maintenance	B2	0	0	0
	Repair	В3	0	0	0
Use stage	Replacement	B4	0	0	0
ose stage	Refurbishment	B5	0	0	0
	Operational energy use	B6	0	0	0
	Operational water use	В7	0	0	0
End of life	Deconstruction, demolition	C1	8.19E-11	0.006	3.28E-05
	Transport	C2	2.30E-09	0.090	8.15E-04
	Waste processing	C3	0	0	0
	Disposal	C4	3.49E-10	80.1	1.82E-04
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-0.096	9.37	-0.068
100% Landfill Scenari	0				
X/	Deconstruction, demolition	C1	8.19E-11	0.006	3.28E-05
End of life	Transport	C2	1.08E-10	0.004	3.78E-05
	Waste processing	C3	0	0	0
	Disposal	C4	4.36E-09	1.00E+03	0.002
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.496	-48.6	0.353
100% Recycling Scen	ario				
	Deconstruction, demolition	C1	8.19E-11	0.006	3.28E-05
End of life	Transport	C2	2.49E-09	0.097	8.82E-04
	Waste processing	C3	0	0	0
	Disposal	C4	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-0.147	14.4	-0.105

HWD = Hazardous waste disposed;

NHWD = Non-hazardous waste disposed;

RWD = Radioactive waste disposed

CARES EPD 0024 Expiry Date: 15 June 2028 Page **12** of **18**

LCA Results (continued)

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

Life Cycle Stage	Impact Category		CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging
Life Cycle Stuge			kg	kg	kg	MJ per energy carrier	kg C	kg C
V /	Raw material supply	A1	0	0	0	0	0	0
	Transport	A2	0	0	0	0	0	0
Product stage	Manufacturing	A3	0	0	0	0	0	0
	Total (of product stage)	A1-3	0	0	0	0	0	0
Construction process	Transport	A4	0	0	0	0	0	0
stage	Construction	A5	0	0	0	0	0	0
/	Use	В1	0	0	0	0	0	0
	Maintenance	B2	0	0	0	0	0	0
	Repair	В3	0	0	0	0	0	0
Use stage	Replacement	B4	0	0	0	0	0	0
use sluge	Refurbishment	В5	0	0	0	0	0	0
	Operational energy use	В6	0	0	0	0	0	0
	Operational water use	В7	0	0	0	0	0	0
%92 Recycling / %8 La	ndfill Scenario			_/			//	1
End of life	Deconstruction, demolition	C1	0	920	0	0	0	0
	Transport	C2	0	0	0	0	0	0
LIIG OF IIIE	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Landfill Scenario	1/1		$\angle \Lambda$			IV	/	/
	Deconstruction, demolition	C1	0	0	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
LIIG OF IIIE	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0
100% Recycling Scena	ırio	/		77	/	/-		
	Deconstruction, demolition	C1	0	1.00E+03	0	0	0	0
End of life	Transport	C2	0	0	0	0	0	0
Y X	Waste processing	C3	0	0	0	0	0	0
	Disposal	C4	0	0	0	0	0	0
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0	0	0	0	0	0

CRU = Components for reuse; MFR = Materials for recycling

MER = Materials for energy recovery; EE = Exported Energy

CARES EPD 0024 Expiry Date: 15 June 2028 Page 13 of 18

Scenarios and additional technical information

Scenarios and addi	tional technical information		
Scenario	Parameter	Units	Results
Module A4 Transport to the Building Site	On leaving the steelworks the reinforcing steel products are transported to a fabricator where constructional steel forms suitable for the installation site, then transported on to the construction of all materials and products. Road transport distance for rolled steel to fabricators and rosteel construction forms to site are assumed to be 100 km and 250 km, respectively. Only the one-way distance is considered as it is assumed that the logistics companies will optinot return empty in modules beyond A3.	on site, inclu ad transpor	ding provision distance for
	Truck trailer - Fuel	litre/km	1.56
	Distance	km	350
	Capacity utilisation (including empty returns)	%	85
	Bulk density of transported products	kg/m³	7850
Module A5 Installation in the Building	into construction steel forms. The operations in this unit process are primarily cutting and welch to the process include electricity, thermal energy, and cutting gases. Other outputs of this process wastewater (where applicable). Consumption grid mix of Lithuania has been selected to sui installation location. Fabrication into structural steel products and installation in the building; including provision and energy, as well as waste processing up to the end-of-waste state or disposal of final residue stage. Installation of the fabricated product into the building is assumed to result in 10% was on typical installation losses reported by the WRAP Net Waste Tool [WRAP 2017]). It is assumed 15.34 kWh/tonne finished product, and that there is a 2% wastage associated with this proce Ancillary materials for installation - Waste material from fabrication, losses per tonne of construction steel forms	ocess are st t specific fo of all mater es during the tage (dete d that fabric	eel scrap and the scrap and th
	Energy Use - Energy per tonne required to fabricate construction steel forms	kWh	15.34
	Waste materials from installation wastage	%	10
Module B2 Maintenance	No maintenance required.		
Module B3 Repair	No repair process required.		1
Module B4 Replacement	No replacement considerations required.		
Module B5 Refurbishment	No refurbishment process required.		//
Reference Service Life	Reinforcing steel products are used in the main building structure so the reference service life the building. BS EN 1990 specifies "building structures and other common structures" as have On this basis, the RSL for this EPD is assumed to be 50 years.		
Module B6 Use of Energy	No energy required during use stage related to the operation of the building.		
Module B7 Use of Water	No water required during use stage related to the operation of the building.		
Modules C1 to C4 End of life	The end-of-life stage starts when the construction product is replaced, dismantled or decons or construction works and does not provide any further function. The recovered steel is transpassmall portion is assumed to be unrecoverable and remains in the rubble which is sent to land steel is assumed to be recycled and 8% is sent to landfill [STEELCONSTRUCTION.INFO 2012]. The and end-of-life in Lithuania. Once steel scrap is generated through the deconstruction activities on the demolition site reached the "end of waste" state. No further processing is required so there are no impacts ass Hence no impacts are reported in module C3.	oorted for redfill. 92% of the EPD cove	ecycling wh he reinforcing rs transport to lered to have
	Waste for recycling - Recovered steel from crushed concrete	%	92
	Waste for energy recovery - Energy recovery is not considered for this study as most end-of- life steel scrap is recycled, while the remainder is landfilled	- \	-
	Waste for final disposal - Unrecoverable steel lost in crushed concrete and sent to landfill	%	2
	Portion of energy assigned to rebar from energy required to demolish building, per tonne	MJ	24
	Transport to waste processing by Truck - Fuel consumption	litre/km	1.56
	Transport to waste processing by Truck – Distance	km	463
	Transport to waste processing by Truck – Capacity utilisation	%	85
	Transport to waste processing by Truck – Density of Product	kg/m³	7850

CARES EPD 0024 Expiry Date: 15 June 2028 Page **14** of **18**

Scenario	Parameter	Units	Results
Module D	Transport to waste processing by Container ship - Fuel consumption	litre/km	0.0041
	Transport to waste processing by Container ship - Distance	km	158
	Transport to waste processing by Container ship – Capacity utilisation	%	50
	Transport to waste processing by Container ship – Density of Product	kg/m³	7850
	and loads are calculated by including the burdens of recycling and the benefit of this study is concerned with the secondary production route and more scrap is recovered at end of life. The net effect of this is that module D mainly models the	equired as input to the	system thai
	input (secondary material) to the steelmaking process. The resulting scrap credit/burden is calculated based on the global "value of scrape".	ap" approach (/worlds	
		ap" approach (/worlds	
	The resulting scrap credit/burden is calculated based on the global "value of scra		steel 2011).
	The resulting scrap credit/burden is calculated based on the global "value of scra Recycled Content	kg	741
	The resulting scrap credit/burden is calculated based on the global "value of scrae Recycled Content Re-used Content	kg kg	741 0

CARES EPD 0024 Expiry Date: 15 June 2028 Page **15** of **18**

Summary, comments and additional information

Interpretation

Scrap based stainless reinforcing steel product of UAB "Litspringas" is made via the EAF production route. The bulk of the environmental impacts and primary energy demand is attributed to the manufacturing phase, covered by information modules A1-A3 of EN 15804+A2.

The interpretation of the results has been carried out considering the methodology- and data-related assumptions and limitations declared in the EPD. This interpretation section focuses on the environmental impact categories as well as the primary energy demand indicators only.

Global Warming Potential (GWP)

The majority of the life cycle GWP impact occurs in the production phase (A1-A3). A1-A3 impacts account for 96.23% overall life cycle impacts for this category. The most significant contributions to production phase impacts are the upstream production of raw materials used in the steelmaking process, generation/supply of electricity and the production/use of fuels on site. Fabrication, installation and the end-of-life processes covered in C1-C4 make a minimal contribution to GWP. For overall climate change impacts, carbon dioxide emissions account for the majority of impacts with methane being the second most significant contributor.

Ozone Depletion Potential (ODP)

The majority of impacts are associated with the production phase (A1-3). Significant contributions to production phase impact come from the emission of ozone depleting substances during the upstream production of raw materials/preproducts as well as those arising from electricity production. Module D shows a very small credit even though scrap burdens are being assessed in this phase. This is explained because ODP emissions are linked to grid electricity production used.

Acidification Potential (AP)

Acidification potential is generally driven by the production of sulphur dioxide and nitrogen oxides through the combustion of fossil fuels, particularly coal and crude oil products. The majority of the lifecycle AP impact occurs in the production phase (A1-A3), similar to GWP. The major contributors to production phase AP impacts comes from energy resources used in the production of the raw materials and pre-products for the steelmaking process and from transportation. Fabrication, installation and the end-of-life processes classed under C1-C4 make minimal contributions.

Eutrophication Potential (EP)

Eutrophication is driven by nitrogen and phosphorus containing emissions and as with GWP and AP is often strongly linked with the use of fossil fuels. The major eutrophication impacts occur in the production phase (A1-A3). Significant contributions to production phase impact comes from the production of raw materials and transport. Fabrication, installation and the end-of-life processes classed under C1-C4 again make minimal contributions.

Photochemical Ozone Creation Potential (POCP)

POCP tends to be driven by emissions of carbon monoxide, nitrogen oxides (NOx), sulphur dioxide and NMVOCs. The production phase is the dominant phase of the lifecycle with regards to POCP impacts. Again, these are all emissions commonly associated with the combustion of fuels. Significant contributors to POCP are the upstream production of raw materials/pre-products and transport, directly linked to fossil fuel combustion. It should be noted that the impacts for steel recycling in module D are almost of the same magnitude as the production phase impacts

CARES EPD 0024 Expiry Date: 15 June 2028 Page **16** of **18**

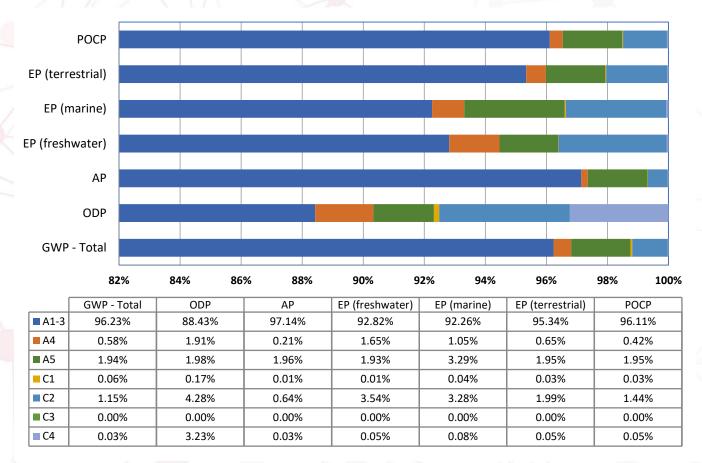


Figure 1 - shows the relative contribution of each life cycle stage to different environmental indicators for the carbon steel reinforcing bars manufactured by the secondary production route (scrap)

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations. Self-declared environmental claims (Type II environmental labelling). BS EN ISO 14021:2016+A1:2021. London, BSI, 2022

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO BS EN ISO 14040:2006+A1:2020. London, BSI, 2020.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006+A2:2020. London, BSI, 2020.

BSI. Sustainability of construction works. Data quality for environmental assessment of products and construction work. Selection and use of data. BS EN 15941:2024. London, 2024.

BSI. Sustainability of construction works. Environmental product declarations. Communication format business-to-business. BS EN 15942:2021. London, 2021.

BSI. Eurocode. Basis of structural and geotechnical design. BS EN 1990:2023. London, 2023.

CARES EPD 0024 Expiry Date: 15 June 2028 Page **17** of **18**

Demolition Energy Analysis of Office Building Structural Systems, Athena Sustainable Materials Institute, 1997

The Concrete Society, Design working life (concrete.org.uk)

LCA for Experts (LCA FE) Software System and Database for Life Cycle Engineering, Sphera Solution GmbH, Leinfelden-Echterdingen, 2021

LCA for Experts (LCA FE) dataset documentation for the LCA FE Software System and Database for Life Cycle Engineering, Sphera Solution GmbH, Leinfelden-Echterdingen, 2021

International Energy Agency, Energy Statistics 2013. http://www.iea.org

Kreißig, J. und J. Kümmel (1999): Baustoff-Ökobilanzen. Wirkungsabschätzung und Auswertung in der Steine-Erden-Industrie. Hrsg. Bundesverband Baustoffe Steine + Erden e.V.

U.S. Geological Survey, Mineral Commodity Summaries, Iron and Steel Slag, January 2014

SteelConstruction.info; The recycling and reuse survey, 2012 http://www.steelconstruction.info/The_recycling_and_reuse_survey

Sustainability of construction works - Environmental product declarations - Methodology for selection and use of generic data; German version CEN/TR 15941

REGULATION (EU) No 305/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

WRAP (2017). WRAP (Waste & Resources Action Programme) Net Waste Tool

worldsteel Association - Life cycle inventory methodology report for steel products, 2017

CARES Construction products and associated services scheme. Appendix CP&AS 16 - Appendix CP&AS16 CARES Quality and Operations Assessment Schedule for Quality Management Systems for stainless steel bar and coil for the reinforcement of concrete including inspection and testing requirements - Certificate number of conformance to BS 6744:2023 at the time of LCA study – 241202

BS 6744:2023 Stainless steel bars. Reinforcement of concrete. Requirements and test methods

SFS 1259:2016 - Reinforcing steels. Cold worked ribbed stainless steel for the reinforcement of concrete B600XA, B600XB and B600XC and stainless welded fabrics

SS 212545:2016 - Reinforcing steel – Corrosion resistant reinforcing steel – Technical requirements for bars, coils, welded fabric and lattice girders in stainless steel

D.M. 17.01.2018 - "Norme tecniche per le costruzioni" Acciaio inossidabile con caratteristiche meccaniche del B450C, saldabile, in rotoli, con struttura austenitica nei diametri da 6 a 16 mm.

NF A35-014 - Reinforcing steels — Plain, indented or ribbed stainless steel bars and coils

ASTM A1022/A1022M – 22a - Standard Specification for Deformed and Plain Stainless Steel Wire and Welded Wire for Concrete Reinforcement

ASTM A955/A955M – 20c - Standard Specification for Deformed and Plain Stainless Steel Bars for Concrete Reinforcement

CARES EPD 0024 Expiry Date: 15 June 2028 Page **18** of **18**